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Abstract

In this work we address the time evolution of random walks on a special type
of Sierpinski carpets, which we call walk similar (WS). By considering highly
symmetric fractals (symmetrically self-similar graphs (SSG)), very recently
Krön and Teufl (2003 Trans. Am. Math. Soc. 356 393) have developed a
technique based on the fact that the random walk gives rise to an equivalent
process in a similar subset. The method is used in order to obtain the time
scaling factor (τ ) as the average passing time (APT) of the walker from a site in
the subset to any different site in the subset. For SSG, the APT is independent
of the starting point. In the present work we generalize this technique under
the less stringent symmetry conditions of the WS carpets, such that the APT
depends on the starting point. Therefore, we calculate exactly the weighted
APT (τ ∗). By performing Monte Carlo simulations on several WS carpets
we verify that τ ∗ plays the role of τ by setting the logarithmic period of the
oscillatory asymptotic behaviour of dynamic observables.

PACS numbers: 05.40.Fb, 05.45.Df, 02.50.−r, 02.70.Uu

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The dynamic properties of physical systems on fractal media have caught increasing interest
in the last few years [1–3]. Following the time evolution of physical observables on a fractal
substrate allows one to explore the influence of symmetry and dimension of the substrate on
the time behaviour of the observables. One of the most striking features of this interplay is
the now well-established fact that observables exhibit logarithmic oscillations in their time
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evolution [4–6]. These oscillations have been reported in several contexts and they are related
to discrete scale invariance (DSI) symmetry [7]. Recently, it has been proposed that dynamic
observables describing physical processes on fractal substrates with spatial DSI symmetry, for
both under and far-from equilibrium conditions, will exhibit logarithmic oscillations in their
time evolution, i.e., time DSI, as a consequence of a developing correlation length [5].

Particularly important is the case of random walks on fractal substrates. The random
walk is the paradigmatic and simplest case of a diffusive system and the study of its dynamic
properties directly reflects the influence of the underlying fractal substrate. When the fractal
structure has very strong symmetric conditions, some analytical proofs have been given.
Grabner and Woess [8] have demonstrated that the probability of return to the origin for
the specific case of a random walker on a Sierpinski gasket S has the following asymptotic
expression,

p0(t) = t−ds/2

[
H

(
log(t)

log(τ )

)
+ O(t−1)

]
, (1)

where t is the number of steps, H is a smooth function of period 1, ds/2 = log(3)/log(5) and
τ = 5. The technique used in that work is based on the consideration of a similar subset S ′, in
such a way that the random walk on the whole fractal gives rise to an equivalent process on S ′.
If the walk starts at a given site z′ in S ′, the average time required to visit any different site in
S ′ (i.e., the so-called average passing time APT) is independent of z′ and its value is the time
scaling factor τ . Subsequently, Teufl [9] has shown that, for this case, it is also possible to
obtain an asymptotic expression for the root of the mean square distance to the origin R2(t),
which is given by equation (1) but with an exponent 2/dw = − log(2)/log(5). In 2003, Krön
and Teufl [10] generalized the validity of equation (1) for a wider (but still very narrow) class
of fractals, i.e., for symmetrically self-similar graphs (SSG), by showing that

ds/2 = log(μ)/log(τ ), (2)

where μ is the mass scaling factor (directly determined from the fractal structure) and τ is the
time scaling factor, which is also equal to the exactly determined APT (for detailed definitions,
see section 2).

In the present work we deal with a class of Sierpinski carpets (with horizontal and vertical
neighbours), which we call WS carpets, for which the high-symmetry conditions required by
Krön and Teufl are not satisfied. However, given a WS carpet F, it is possible to find an
adequate, similar sub-carpet F ′ by selecting a special site from each one of the ‘copies’ of the
basic cell that make up F (see the precise definitions and details in the following section). As
in the cited papers [9, 10], for WS carpets the random walk on F gives rise to an equivalent
process on F ′, but now the APT depends on the starting site z′. Then we determine an exact
weighted mean of all the individual APT values, denoting it as τ ∗.

It is also worth mentioning that for the case of WS carpets, it is no longer possible
to replicate the analytical technique already used in previous papers [9, 10], in order to
prove the existence of logarithmic oscillations in the asymptotic behaviour of time-dependent
observables. In order to overcome this shortcoming we performed numerical simulations of
random walks on several WS fractal substrates, and verified that the asymptotic expressions
obtained for R2(t) [10] and p0(t) [9] hold very well when τ ∗ is used in place of τ .

The paper is organized as follows: section 2 is devoted to the theoretical calculations,
we give some basic definitions, develop our computation scheme for τ ∗, and apply it to some
examples. In section 3 we present the results of our numerical simulations, and in section 4
we discuss our results and give the conclusions of our work.
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2. Theoretical calculations

2.1. Walk-similar carpets: definition and examples

In this subsection the conditions that have to satisfy the fractals used are specified. As in [6],
deterministic carpets F generated by means of the following typical scheme will be considered:
take a site z0 (origin) and a positive integer M. Call F0 the set having the origin as its only
site. Then the minimal cell F1 is built by following a specific geometrical procedure that adds
M sites to F0. Now, inductively, construct the set Fn+1 by adding to the set FnM ‘copies’ of
itself according to the same geometrical pattern. Finally, F is the union of the sets Fn for all
n. F1 is commonly called the basic cell or the first generation, which, in the present case, has
to be minimal in the sense that it cannot be decomposed into smaller cells. The mass scaling
factor is then defined as μ = M + 1. Note that F can be decomposed into a union of infinite
many copies of F1. Let F ′ be the set constructed by picking the copy of the origin in each
one of these replications of the basic cell. Due to the self-similarity of F, there exists a natural
one-to-one correspondence z ↔ z′ between the sites z ∈ F and z′ ∈ F ′.

Consider the symmetric random walk on F departing from z0: when the walker is at some
z of F, the probability to visit each neighbour site is 1/degF (z) (where degF (z) = number of
neighbours of z in F). Then it is defined that two sites of F ′ are neighbours in F ′ whenever
they can be joined by a path in F not visiting other points of F ′.

For each z′ in F ′, the environment of z′ in F is defined as the set formed by z′ and the
sites not belonging to F ′ that can be joined with z′ (in F) by a path not passing by any point
of F ′.

Then, a connected finite ramification fractal F is defined as WS (walk-similar) if the
one-to-one correspondence z ↔ z′ between F and F ′ satisfies the following properties:
(a) z1 and z2 are neighbours in F if and only if z′

1 and z′
2 are neighbours in F ′.

(b) If z1 and z2 are F sites, the following probabilities are equal:
p = probability that, starting at z1, z2 is visited in the first step.
p′ = probability that, starting at z′

1, z
′
2 is the first F ′ site different than z′

1 1 cm visited by the
walker.

The idea behind those definitions is that a walk on F has also to originate a walk on F ′: the
walker departs from z′

0 = z0, the second step of the F ′ walk is the next distinct F ′ site visited
by the walker, etc. So, the WS conditions imply the presence of two equivalent stochastic
processes.

The symmetry of WS carpets implies the existence of a length scaling factor b. Three
examples that fulfil the conditions to be WS are given in figure 1. Here, we introduce
the notation Lb=2 for the fractal whose first generation has the shape of an L with b = 2
(figure 1(a)), and Tb=3 for the fractal whose first generation has the shape of a T with b = 3
(figure 1(b)). These carpets are loopless and they will be useful in order to illustrate our
procedures. Figure 1(c) shows a basic cell having a more complicate structure, which leads to
a nonloopless WS carpet that we denote LMb=5.

2.2. Local analysis

Let us first consider a fixed site w1 in F ′. Suppose that the F ′ sites w2, w2, . . . , wr are the
neighbours of w1 in F ′, and wr+1, . . . , ws (together with w1) form the environment of w1 in
F. Then let us assume that the symmetric random walk starts at w1 and finishes the first arrival
at some wj , with 2 � j � r (as is known, this event occurs with probability 1). Define the

3
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(a)

(b)

(c)

Figure 1. Examples of WS fractals: (a) fractal F ≡ Lb=2, (b) fractal F ≡ Tb=3 and (c) fractal
LMb=5. The notation for the fractals is explained in the text. In cases (a) and (b) sites belonging
to the F1 and F2 sets are shown, while in case (c) only F1 is shown for the sake of space. Dark
grey squares indicate sites also belonging to the corresponding F ′ set.

ATP of w1 (τ (w1)) as the expected number of steps of this walk. Now, in order to calculate
τ(w1) let us consider the s × s transition matrix P of this local walk given by

P(i, j) = 0, if wi,wj are not neighbours in F,
P(i, j) = 0, for every i, if 2 � j � r , and
P(i, j) = 1/degF (wj ), if j = 1 or r + 1 � j � s and wi,wj are neighbours in F.

For every integer k � 1, P k(i, j) is the probability that the walker will arrive at the site wi in
the step k, starting at wj . Then, if I is the s × s identity matrix, it is well known that

(I − P)−1 =
∞∑

k=0

P k,

and this implies
∞∑

k=1

kP k =
∞∑
l=1

∞∑
k=l

P k =
∞∑
l=1

P l(I − P)−1 = P(I − P)−2.

Then, if Q = P(I − P)−2, we have

τ(w1) =
r∑

i=2

∞∑
k=1

kP k(i, 1) =
r∑

i=2

Q(i, 1).

2.3. Computation of τ ∗

Let us recall that there exists only a finite number of possible geometric arrangements between
each site of F and its neighbours. Then according to this criterion F can be partitioned into a
finite number of subsets A1, . . . , Am. The corresponding subsets A′

1, . . . . , A
′
m of F ′ satisfy

that, for each fixed j , the sites in A′
j have an equivalent environment structure. This condition

implies that the sites in Aj and in A′
j have the same number Dj of neighbours in F and in F ′,

respectively. The converse is not true: two or more sites with the same number of neighbours
can have different geometric situations (see the last solved example).

The first key fact that allows us to calculate τ ∗ is that all sites z′ in A′
j have the same

matrices P,Q for their local computations. Hence, they have also the same value τ(z′), which
is denoted τj .

The second key fact is that (due to the WS conditions) the expected frequency fj of visits
to Aj in the first process is the same as the one to A′

j in the second process.
The preceding observations lead to

τ ∗ =
m∑

j=1

fjτj . (3)
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Figure 2. Sites belonging to the set F4 for fractal F ≡ Lb=2 (first and second generations are
shown in figure 1(a). Dark grey squares indicate sites belonging also to F ′. The numbers have the
following meaning: ‘1’ is an F ′ site in A′

j ; 2, 3, . . . , r are its F ′-neighbours and r + 1, r + 2, . . . , s

are the sites (together with ‘1′) belonging to the ‘1′ environment in F. For A′
1, r = 2, s = 5; for

A′
2, r = 3, s = 6; and for A′

3, r = 4, s = 7

In order to perform the calculations we propose the following scheme. For each n and j ,
let c(n, j) be the number of Fn sites in Aj . Since the expected frequency of visits to Aj is
proportional to Dj , for each j one has

fj = Dj . lim
n→∞ c(n, j)/Tn, where Tn =

m∑
i=1

c(n, i)Di. (4)

2.4. Solved examples

In this subsection we show a sketch of the computation of τ ∗ for three WS carpets. In the
following, matrices are not displayed for the sake of space. Let us begin with the fractal of
figure 1(a). Let A1 be sites with one neighbour, A2 be sites with a vertical neighbour and a
horizontal neighbour (the origin can be neglected because it has a special local situation), and
A3 be sites with three neighbours. Then Dj = j for j = 1, 2, 3.

Using simple recurrence relationships we obtain c(n, j) ∼ 3n−1 for j = 1, 2, 3, Tn ∼
2 × 3n (note that for an arbitrary pair of sequences un and vn, we denote un ∼ vn when the
limn→∞ un/vn = 1 holds), f1 = 1/6, f2 = 1/3 and f3 = 1/2.

For each j , figure 2 shows the local structure from which τj is computed. The following
notations are used: 1 is an F ′ site in A′

j ; 2, 3, . . . , r are its F ′ neighbours and r + 1, r + 2, . . . ,

s are the sites (together with ‘1’) of the ‘1’ environment in F.
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A detailed calculation gives τ1 = 12, τ2 = 6, τ3 = 4. Finally, one has that
τ ∗ = τ1f1 + τ2f2 + τ3f3 = 6.

Let us now consider the fractal of figure 1(b) and the sets A1 (sites with a vertical
neighbour), A2 (sites with an horizontal neighbour), A3 (sites with two vertical neighbours),
A4 (sites with two horizontal neighbours), A5 (sites with three neighbours) and A6 (sites with
four neighbours). The obtained results are

c(n, 1) ∼ 1
2 × 5n−1, c(n, 2) ∼ 5n−1, c(n, 3) ∼ 3

2 × 5n−1, c(n, 4) ∼ 5n−1,

c(n, 5) ∼ 1
2 × 5n−1, c(n, 6) ∼ 1

2 × 5n−1, Tn ∼ 10 × 5n−1,

f1 = 1/20, f2 = 2/20, f3 = 6/20, f4 = 4/20, f5 = 3/20, f6 = 4/20,

τ1 = 33, τ2 = 27, τ3 = 15, τ4 = 15, τ5 = τ6 = 9 and finally τ ∗ = 15.

Consider now the carpet LMb=5, whose generating cell is shown in figure 1(c). By
taking the partition composed by A1 (sites with one neighbour), A2 (sites with two horizontal
neighbours), A3 (sites with a vertical up neighbour and a horizontal right neighbour, or sites
with a vertical down neighbour and a horizontal left neighbour ), A4 (sites with a vertical up
neighbour and a horizontal left neighbour), A5 (sites with three neighbours) and A6 (sites with
four neighbours), the calculations lead to

c(n, 1) ∼ 5
6 × 13n−1, c(n, 2) ∼ 19

6 × 13n−1, c(n, 3) ∼ 2 × 13n−1,

c(n, 4) ∼ 2 × 13n−1, c(n, 5) ∼ 29
6 × 13n−1, c(n, 6) ∼ 1

6 × 13n−1,

f1 = 5/182, f2 = 38/182, f3 = 24/182, f4 = 24/182, f5 = 87/182,

f6 = 4/182, τ1 = 171, τ2 = τ3 = 71.25, τ4 = 104.5, τ5 = τ6 = 38

and finally τ ∗ = 61.75.

3. Numerical simulations

In this section we present the results of numerical simulations of random walkers on fractal
media with the aim of comparing them to the theoretical predictions of the previous section.
We use standard Monte Carlo techniques to simulate the displacement of random walkers on
WS Sierpinski carpets and directly compute the average squared displacement R2(t) and the
probability of returning to the origin p0(t) from the obtained trajectories. In order to obtain
reliable statistics the observables are averaged over a number ns of different trajectories. We
use large enough lattices in order to guarantee that the walkers never reach the edges, so that
our results are free of finite-size effects.

We fit the asymptotic behaviour of p0(t) to the expression

p0(t) = t−ds/2
Nω∑
n=0

αn cos

(
2πn

log(t)

log(τ )
+ ϕn

)
, (5)

where ds/2 = log(μ)/log(τ )), ϕn are phase shifts, αn are constants and Nω is the number of
harmonics considered. As μ = M + 1 is a fixed parameter determined by the fractal structure,
the fit depends basically on τ , which governs the exponent of the power law and also the
period of the oscillations. It is worth mentioning that these oscillations are the signature of
the time DSI and τ is the corresponding fundamental scaling ratio between timescales.

For R2(t) we basically use the same functional asymptotic expression, namely

R2(t) = t2/dw

Nω∑
n=0

βn cos

(
2πn

log(t)

log(τ )
+ φn

)
, (6)
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Figure 3. Temporal behaviour of dynamic observables measured for the fractal Lb=2 (generation
F13). (a) Y1 ≡ p0/[α0t

− log(μ)/ log(τ )] for p0 obtained from Monte Carlo simulations (continuous
line) and fitted with equation (5) (dotted line) with Nω = 1, μ = 3 (fixed parameter), and τ = 6.0
(fitted parameter). The relative amplitude of the oscillation is given by α1/α0 = 0.014. (b) Y2 ≡
R2/[β0t

log(b2)/ log(τ )] for R2 obtained from simulations (continuous line) and fitted with
equation (6) (dotted line) with Nω = 4, b = 2 (fixed parameter) and τ = 6.0 (fitted parameter).
The amplitude of the oscillation is 0.005 (β1/β0 = 0.004, while the contributions of β2, β3 and β4
are smaller than 0.001).

where the exponent is related to τ through other fixed parameters according to

γ = 2

dw

= 2

df

log(μ)/log(τ ), (7)

where df is the fractal dimension and dw is the random walk exponent. We propose this fitting
expression as a generalization of the one demonstrated analytically for the Sierpinski gasket in
[9], where df = log(μ)/ log(2). Note that for Sierpinski carpets df = log(μ)/ log(b), where
b is the length of the side of the unit cell (measured in units of the lattice spacing), so one has

dw = log(τ )/ log(b). (8)
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Figure 4. Same as figure 3 for the fractal Tb=3 (generation F8). In this case, the parameters are:
(a) μ = 5 (fixed), τ = 15.0 (fitted) and α1/α0 = 0.07; (b) b = 3 (fixed) and τ = 15.0 (fitted).
The amplitude of the oscillation is 0.018 (β1/β0 = 0.014, while the contributions of β2, β3 and β4
are smaller than 0.001).

We first show the numerical results for the fractal Lb=2 whose basic cell F1 is shown
in figure 1(a). We performed the simulations by using the generation F13, which requires
a lattice of side 8192. The observables are averaged over ns = 107 different trajectories
always initialized in the origin. It should be mentioned that by starting random walks from
different sites, both the amplitudes and the phases will change, but the exponents and τ remain
unchanged. Figure 3 shows the time dependence of both p0(t) and R2(t). We fit the numerical
data by taking Nw = 1 for p0(t) and Nw = 4 for R2(t). The data are plotted in a way that
enhances the visualization of the oscillating behaviour of the observables. We chose the range
of the fit from t = 104 to t = 106 since equations (5) and (6) are expected to be valid in the
asymptotic regime. However, from figure 3, it is clear that the asymptotic regime is reached
earlier for observable p0(t) than for R2(t). The fits give τ = 6.0(p0(t)) and τ = 6.0(R2(t)),
which are in excellent agreement with the theoretically predictions of section 2.4, namely
τ = 6.

Figure 4 shows the results obtained for another fractal analysed in section 2.4, namely
the Tb=3 fractal whose basic cell is shown in figure 1(b). The calculations are performed

8
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Figure 5. Same as figure 3 for the fractal Lb=4 (generation F6). In this case, the parameters are:
(a) μ = 7 (fixed), τ = 27.8 (fitted), and α1/α0 = 0.06; (b) b = 4 (fixed) and τ = 27.9 (fitted).
The amplitude of the oscillation is 0.031 (β1/β0 = 0.032, while the contributions of β2, β3 and β4
are smaller than 0.0005).

for the generation F8 (lattice of side 6561). In this case (and all the other ones presented in
this section, unless explicitly indicated) we perform the fit in the range 103 � t � 106 for
observable p0(t) and 104 � t � 106 for observable R2(t). Proceeding in this way, the range of
the fit for p0(t) includes at least two complete oscillations for this observable whose statistics
is poorer than that of R2(t). Furthermore, figures 5 and 6 show simulation results for the Lb=4

and LMb=5 fractals, respectively.
Table 1 summarizes the results obtained for τ in the simulations, which are also compared

with the values of τ ∗ obtained theoretically, showing an excellent agreement. In fact, we
expect that the small differences between the values of τ and τ ∗ would be within the numerical
error bars involved in the determination of τ . The error in τ arises because equations (5)
and (6) hold in the asymptotic regime, which on the one hand is difficult to identify in the
numerical simulations, and on the other hand it may be different for different fractals and
different observables. For example, for fractal LMb=5 we have enough statistics to obtain a
very good fit to R2(t) in the range 105 � t � 5.106, as can be appreciated in figure 6(b),

9
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Figure 6. Same as figure 3 for the nonloopless WS fractal LMb=5 (generation F5). In this case, the
parameters are (a) Nω = 4, μ = 13 (fixed), and τ = 61.6 (fitted). The amplitude of the oscillation
is 0.04 (α1/α0 = 0.037, α2/α0 = 0.029, while the contributions of α3 and α4 are smaller than
0.001). (b) Nω = 4, b = 5 (fixed), and τ = 61.8 (fitted). The amplitude of the oscillation is 0.027
(β1/β0 = 0.022, β1/β0 = 0.004, while the contributions of β3 and β4 are smaller than 0.001).

leading to the predicted value of τ ≡ τ ∗. After a careful study of the dependence of the fitted
value of τ on the range of the fit and the statistics, we can state the error bars are always
smaller than 1%.

4. Discussion and conclusions

Focusing our attention on Walk Similar (WS) fractals, defined in this paper, we calculated
exactly the weighted average passing time (τ ∗) required by a walker to pass from a site
in an adequate subset to any different site in the same subset. Subsequently, by means of
extensive computer simulations, we show that τ ∗ can be identified with the logarithmic period
of the oscillations that modulate the asymptotic behaviour of dynamic observables, such as the

10
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Table 1. Values of weighted APT (τ ∗) obtained by applying the theoretical scheme developed
in section 2, and the time scaling factor (τ ) obtained by fitting numerical results of Monte Carlo
simulations with the aid of equations (5) and (6) for observables p0 and R2, respectively (for more
details, see section 3).

τ

Fractal τ ∗ p0 R2

Lb=2 6 6.0 (1) 6.0 (1)
Tb=3 15 15.0 (1) 15.0 (1)
Lb=4 28 27.8 (2) 27.9 (2)
LMb=5 61.75 61.6 (2) 61.8 (3)

Table 2. Theoretical prediction of dynamic exponents from a fractal structure. Walker dimension,
dw , and spectral dimension, ds , predicted from structural parameters: μ (mass scaling factor), df

(fractal dimension) and τ ∗ (weighted APT). Results obtained by assuming that relationships (7)
and (2) hold for WS fractals and that the time scaling factor τ is given by τ ∗.

Fractal μ df = log(μ)/ log(b) τ ∗ dw = log(τ ∗)/ log(b) ds/2 = log(μ)/ log(τ ∗)

Lb=2 3 1.585 6 2.585 0.613
Tb=3 5 1.465 15 2.465 0.594
Lb=4 7 1.404 28 2.404 0.584
LMb=5 13 1.594 61.75 2.562 0.622

probability of return to the origin (p0, see equation (1)) and the average squared displacement
from the origin of the walk (R2). In this way we test that τ ∗ ≡ τ , i.e, the time scaling
factor. In addition, our simulations validate the functional form of the asymptotic behaviour
theoretically developed by Grabner and Woess [8] and Krön and Teufl [10] for fractals of
higher symmetry than the WS carpets defined in this paper. Of course, τ also enters in the
expressions of the exponent ds/2 (see equation (2)) and dw (see equation (7)), governing the
power-law dependence of R2 and p0, respectively.

Let us now discuss the relationship between dynamic and static exponents. In [12]
(see equation (15) and subsequent lines) it is proved that

τ = bdf +ζ (9)

holds for finite ramified Sierpinski carpets, which implies the validity of the Einstein
relationship

dw = df + ζ, (10)

with ζ being the resistance scaling exponent (whose definition is detailed below).
The inspection of table 2 suggests that in the case of WS loopless carpets

τ = bμ. (11)

This relationship can be proved by following the technique used in [12], where given a
carpet G, an adequate nested sequence of similar sub-carpets G = G(1) ⊃ G(2) . . . is taken
(in the case of a WS carpet F, this corresponds to F ⊃ F ′ . . .). Then, if x and y are different
G(j) sites, we considered the effective resistance R

j
xy , which (regarding the G sites as the

nodes of an electrical network) coincides with the potential difference when a unitary current
source is inserted between x and y through G. According to equation (12) in [12], for all x, y

one has

lim
j→∞

R
j+1
xy

R
j
xy

= bζ . (12)
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Now, given two different sites of a loopless carpet, there is only one non-overlapping path
between them, so their potential difference is simply their Pythagorean distance. For loopless
WS carpets, the construction process ensures that, for all j, R

j+1
xy /R

j
xy = b. Then, according

to equation (12), one has ζ = 1. This fact, along with df = log(μ)/ log(b) and equation (9),
gives equation (11).

In the nonloopless example we obtained τ ∗ = 61.75 �= μ.b = 13 × 5 = 65, and then
equation (11) does not hold. Consequently, in this case, ζ �= 1. In fact, here one has
dw = 2.5618, df = 1.5937, so that ζ = 0.9681.

Let us now stress the relevance of the exact evaluation of τ performed in this paper because
for WS fractals in general and according to equation (8), dw assumes a meaningful physical
interpretation as the exponent linking time and space fundamental scaling ratios. Also, for WS
loopless fractals, one can write ds as a function of dw, so that both exponents of the random
walk are functions of the time scaling ratio.

Finally, it should be mentioned that the observation of oscillation in time-dependent
observables of the random walk is a consequence of the interplay between the space discrete
scale invariance (DSI) [7] of the underlying substrate and the dynamics/kinetics of the physical
process that takes place on the substrate, which leads to the occurrence of time DSI. Of
course, this phenomenon is quite general and has been reported upon the relaxation of the
magnetization on the Ising magnet [4], epidemic spreading in the contact process [15] and the
voter model for opinion formation of a society of interacting individuals [16]. So, we expect
that our study based on both exact calculations and numerical simulations will contribute to
the understanding of these observations, which are yet mainly based on computer calculations
only.
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